Using Emotional Markers' Frequencies in Stock Market ARMAX-GARCH Model
نویسندگان
چکیده
We analyze the possibility of improving the prediction of stock market indicators by adding information about public mood expressed in Twitter posts. To estimate public mood, we analysed frequencies of 175 emotional markers words, emoticons, acronyms and abbreviations in more than two billion tweets collected via Twitter API over a period from 13.02.2013 to 22.04.2015. We explored the Granger causality relations between stock market returns of S&P500, DJIA, Apple, Google, Facebook, Pfizer and Exxon Mobil and emotional markers frequencies. We found that 17 emotional markers out of 175 are Granger causes of changes in returns without reverse effect. These frequencies were tested by Bayes Information Criteria to determine whether they provide additional information to the baseline ARMAX-GARCH model. We found Twitter data can provide additional information and managed to improve prediction as compared to a model based solely on emotional markers.
منابع مشابه
Modeling Stock Market Volatility Using Univariate GARCH Models: Evidence from Bangladesh
This paper investigates the nature of volatility characteristics of stock returns in the Bangladesh stock markets employing daily all share price index return data of Dhaka Stock Exchange (DSE) and Chittagong Stock Exchange (CSE) from 02 January 1993 to 27 January 2013 and 01 January 2004 to 20 August 2015 respectively. Furthermore, the study explores the adequate volatility model for the stoc...
متن کاملHas Tehran Stock Market Calmed Down after Global Financial Crisis?Markov Switching GARCH Approach
We have introduced an early warning system for volatility regimes regarding Tehran Stock Exchange using Markov Switching GARCH approach. We have examined whether Tehran Stock Market has calmed down or more specifically, whether the surge in volatility during 2007-2010 global financial crises still affects stock return volatility in Iran. Doing so, we have used a regime switching GARCH model. ...
متن کاملForecasting Stock Price using Hybrid Model based on Wavelet Transform in Tehran and New York Stock Market
Forecasting financial markets is an important issue in finance area and research studies. On one hand, the importance of prediction, and on the other hand, its complexity, have led to huge number of researches which have proposed many forecasting methods in this area. In this study, we propose a hybrid model including Wavelet Transform, ARMA-GARCH and Artificial Neural Network (ANN) for single-...
متن کاملAssessing the Exchange Rate Fluctuation on Tehrans Stock Market Price: A GARCH Application
This paper empirically investigates the exchange rate effects of Iranian Rial against Dollar (Rial vs.US) on stock prices in Iran. The sample period for the study has been taken from March 20, 2004 to March 20, 2010 using daily nominal exchange rate of Rial /us and daily closing values of Tehran Stock Exchange. Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model has been use...
متن کاملInvestigating the Asymmetry in Volatility for the Iranian Stock Market
This paper investigates the asymmetry in volatility of returns for the Iranian stock market using the daily closing values of the Tehran exchange price index (TEPIX) covering the period from March 25, 2001 to July 25, 2012, with a total of 2743 observations. To this end, two sets of tests have been employed: the first set is based on the residuals derived from a symmetric GARCH (1,1) model. The...
متن کامل